Beam Energy Scan studies at RHIC Flow studies in small system

ShinIchi Esumi Inst. of Physics, Univ. of Tsukuba Center for Integrated Research in Fundamental Science and Engineering (CiRfSE)

Heavy-Ion Café meeting : in Tokyo-Tsukuba-KEK area (East side of Japan) Heavy-Ion Pub meeting in Hiroshima-Osaka-Nara-Nagoya area (West side of Japan)

Heavy Ion Meeting (HIM force), 22/Oct/2016, Gwangju, Korea

ShinIchi Esumi, CiRfSE, Univ. of Tsukuba

2

Chemical and Thermal kinetic freeze-out with radial flow

Hadron yields are fitted with chemical thermal model in order to extract (T_{ch}, μ_B) parameters.

Hadron pT spectra are fitted with Blast-wave model in order to extract (T_{kin}, β_T) parameters.

5

6

Heavy Ion Meeting (HIM force), 22/Oct/2016, Gwangju, Korea

arXiv:1401.3043 PRL112 (2014) 16, 162301

arXiv: 1601.07692

Yasushi Nara,^{1,2} Harri Niemi,³ Akira Ohnishi,⁴ and Horst Stöcker^{2,3,5}

FIG. 1: Directed flows of protons and pions in mid-central Au+Au collisions (10-40%) at $\sqrt{s_{NN}} = 7.7 - 27$ GeV from JAM cascade mode (dashed lines), and JAM cascade with attractive orbits (solid lines) in comparison with the STAR data [1].

FIG. 2: Same as in Fig. 1, but for central collisions (0-10%).

9

arXiv:1301.2347, PRL110 (2013) 14, 142301

Elliptic Flow v₂ --- departure from quark number scaling ---

PRC88 (2013) 014902

Beam energy dependence of v_3^2

Beam energy dependence of $v_3^2/n_{ch,PP}$

PRL116 (2016) 112302

Heavy Ion Meeting (HIM force), 22/Oct/2016, Gwangju, Korea

ShinIchi Esumi, CiRfSE, Univ. of Tsukuba

charge dependent v2 w.r.t. charge asymmetry

Heavy Ion Meeting (HIM force), 22/Oct/2016, Gwangju, Korea

ShinIchi Esumi, CiRfSE, Univ. of Tsukuba 2

Low-mass ee-pair excess

--- ρ shape modification --- --- duration time of QGP ---

Long standing discrepancy between star and phenix has been resolved with an improved and updated analysis with Hadron Blind Detector (HBD) in phenix : Phys. Rev. C 93 (2016) 014904

final results for 19.6, 200 Ge and comparison to SPS at Phys. Lett. B 750 (2015) 64

Heavy Ion Meeting (HIM force), 22/Oct/2016, Gwangju, Korea

Shape of net-proton distribution

arXiv:1309.5681 Phys.Rev.Lett. 112 (2014) 032302

ShinIchi Esumi, CiRfSE, Univ. of Tsukuba

Higher Order Fluctuations of Conserved Quantities

1. Higher sensitivity to correlation length (ξ) and probe non-gaussian fluctuations near the Critical Point.

$$\left\langle \left(\delta N\right)^{3}\right\rangle _{c}\approx\xi^{4.5}, \quad \left\langle \left(\delta N\right)^{4}\right\rangle _{c}\approx\xi^{7}$$

M. A. Stephanov, Phys. Rev. Lett. 102, 032301 (2009).
M. A. Stephanov, Phys. Rev. Lett. 107, 052301 (2011).
M. Asakawa, S. Ejiri and M. Kitazawa, Phys. Rev. Lett. 103, 262301 (2009).

2. Direct connection to the susceptibility of the system.

$$\chi_q^{(n)} = \frac{1}{VT^3} \times C_{n,q} = \frac{\partial^n (p/T \wedge 4)}{\partial (\mu_q)^n}, q = B, Q, S$$

S. Ejiri et al, Phys.Lett. B 633 (2006) 275. Cheng et al, PRD (2009) 074505. B. Friman et al., EPJC 71 (2011) 1694. F. Karsch and K. Redlich, PLB 695, 136 (2011). S. Gupta, et al., Science, 332, 1525(2012). A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111,

062005(13) // P. Alba et al., arXiv:1403.4903

CiRfSE workshop, Jan. 19, 2016 @ Tsukuba University.

16 / 40

27

Heavy Ion Meeting (HIM force), 22/Oct/2016, Gwangju, Korea

Xiaofeng Luo

Rapidity Window Dependence

Significant rapidity window dependence are observed. Large acceptance is crucial for the fluctuation measurement.

Xiaofeng Luo

CiRfSE workshop, Jan. 19, 2016 @ Tsukuba University.

36 / 40

28

STAR Upgrades and BES Phase-II (2019-2020)

Xiaofeng Luo

CiRfSE workshop, Jan. 19, 2016 @ Tsukuba University.

38/40

2nd half starts here, on flow and correlation studies including small systems...

The XXVth International Conference on Ultrarelativistic Nucleus-Nuc

Event Shape Engineering (ESE), Event Shape Selection --- for a given centrality ---

flat p_T dependence -> indicative for an initial geometry

Applications of ESE

- correlation between radial (β_T) and elliptic (v₂) flows
- correlation between HBT eccentricity ($\epsilon_2^{\text{final}}$) and v_2
- correlation between di-jet w.r.t. Φ_2 and v_2

PRC93 (2016) 034916

Heavy Ion Meeting (HIM force), 22/Oct/2016, Gwangju, Korea

Possible application (on going) of ESE Shape and flow relation to the jet modification

Forward-Backward Asymmetry in $\Delta\eta$ Shape with respect to Trigger η

(associate yield per trigger with AMPT simulation)

Forward-backward asymmetry is visible in AMPT simulation. Near side $\Delta \eta$ peak is backward shifted w.r.t. trigger η direction.

Stronger de-correlation of E.P. with η -gap

η dependence of v_n or de-correlation of E.P.

CMS, QM15

Pb+Pb

Bozek et.al., arXiv:1011.3354

for the CMS Collaboration

Ridge Yield vs (p_T, beam energy, multiplicity) in pp at LHC

Hot Quarks Workshop 2014

arXiv:1509.04776

PRL116 (2016) 172301, +supplementary material https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2015-09/

similar p_T dependence of v_2 to the larger systems no (or very weak) dependence of v_2 on energy and multiplicity

AMPT simulation p+Pb 5TeV (string-melting on/off)

for ALICE backward-central $\Delta \phi$ correlation ($|\Delta \eta|=3\sim6$)

AMPT pp test with reference fitting method

- AMPT data
 - Reference fitting : F(x) = a + b f(x)
- Reference fitting + v2 term : F(x) = a + b f(x) + 2 c cos(2x)

- AMPT data Reference fitting + 1
- AMPT data (Reference fitting + v2 term) + 1

Thank you very much for our current and continuing fruitful collaboration !