

Study of Jet-like Particle-yield modification at 2.76 TeV in Pb-Pb collisions with ALICE

Minwoo Kim

Yonsei University

Overview

- Introduction
- Correlation, Jets, Flow and $I_{_{AA}}$
- Recent results in two-particle correlation analysis
- Analysis Strategy
 - ALICE detectors
 - Work-flow of two particle correlation analysis
- Precise background subtractions from dN/d $\Delta \phi$
- Results
 - Peak shape of jet-like particles
 - Modification of yields of associated hadrons in jets
 - Model study
- Summary and Plan

Two-particle Correlations

- Study the underlying mechanism and dynamics of particle production
 - Hard component : jets, in-medium modification
 - Soft component : collectivity, flow, initial state effects

Jets and Correlation Analysis

Jets induced from hard scattering could be observed but they are hidden

- Two-particle azimuthal correlations is the powerful tool to explore QGP
 - sensitive to parton fragmentation, energy loss in the QGP
 - give a chance to study jets without full reconstruction of jets

Two-particle correlations in Experiments

Minwoo Kim (Yonsei University)

HIM 2016

Heavy Ion collisions and Flow

- Anisotropic flow v_n is defined via Fourier decomposition of azimuthal (φ) distribution of produced particles relative to the reaction plane $\Psi_{_{\rm RP}}$
- Elliptic flow (n=2) is the largest component in mid-central collision

Harmonic decomposition

 Double hump structure can be naturally explained by accounting for higher harmonics

Jet-like Near-side Peaks in the Hot Medium

The Shape of the near-side peaks

The Shape of the near-side peaks

"Hadron Correlations Measured with ALICE", Jan Fiete Grosse-Oetringhaus (Nuclear Physics A 910-911 (2013) 58-64)

- The rms in Δη increases significantly towards central collisions
 The rms in Δφ is rather independent of centrality
- The interplay of longitudinal flow with a fragmenting high p_T parton can lead to such an asymmetric peak shape

Modification of associated hadrons yield : I_{AA} vs. $p_{T,assoc}$

Minwoo Kim (Yonsei University)

27th, MAY, 2016

CMS-PAS-HIN-12-010

ALICE

<u>Analysis Strategy</u>

"How can we practically study jets with correlations in heavy-ion collisions?"

ALICE detectors
 Work-flow of two-particle correlation analysis
 Precise background subtractions from dN/dΔφ
 Event-plane angle

Studying energy loss with Correlations

Hadron-hadron

-Surface bias the trigger -Potential nearside modifications -Mix of tangential jets & maximized modification -Broad parton energy distribution

ALICE PRL 108 092301

Jet-hadron

-less surface bias
 -nearside pp like by
 construction
 -Several parameters to
 vary pathlength
 -better constrains initial
 parton energy

STAR PRL 112 122301

-No surface bias -No nearside

-quark jets on awayside

-photon p_T approximates initial parton p_T

PHENIX PRL 111, 032301

Experimental setup: ALICE detectors

- ITS (Inner Tracking System)
- six cylindrical layers of silicon detectors
- Coverage : |η| < 0.9, 2π on φ
- specialized to reconstruct vertex positions
- good tracking performance and particle identification down to p_τ ~ 100 MeV/c
- TPC (Time Projection Chamber)
- a cylindrical gas detector
- coverage : $|\eta| < 0.9$, 2π on ϕ
- wide momentum coverage to measure
 (0.15 < ρ_τ < 50 GeV/c)
- PID with high resolution of d*E*/dx
- VZERO
- Scintillator located in forward rapidity
- Centrality determination and Trigger

Work-Flow of two-particle correlation analysis

• p-p : 2.76 TeV taken in 2011 (~25.4 M events, without SDD)

Minwoo Kim (Yonsei University)

HIM 2016

27th, MAY, 2016

16

$dN/d\Delta \phi$ of Pb-Pb : subtraction of harmonics

- 1. Fourier decomposition of $(dN/d\Delta \phi)_{|\Delta n|-qap}$: up to 5th order
- 2. Subtract the harmonics from $(dN/d\Delta\phi)_{|\Delta n|<1.6}$ based on the fits
- 3. Integrate over $\Delta \phi$ to calculate the yields per trigger particle

Comparison of extracted $V_{n\Delta}$ with published values

Geometrical setup for φ_{s} analysis

$$\begin{aligned} Q_{n,x} &= \sum W_i \cos(n\phi_i) = Q_n \cos(n\psi_n) \\ Q_{n,y} &= \sum W_i \sin(n\phi_i) = Q_n \sin(n\psi_n) \\ \Psi_{EP,n} &= \tan^{-1} \left(Q_{n,x} / Q_{n,y} \right) / n \end{aligned}$$

event plane angle calculated by Q-vector (Scalar Product)

$$\varphi_{S} = |\varphi_{trigger} - \psi_{EP}|$$

angle difference between trigger and EP

In-plane : Close to EP (in case of the 2nd harmonics, ψ_2) Middle I / II : intermediate Out-of-plane : perpendicular to EP

HIM 2016

Event-plane angle at forward rapidity

 Event-plane angle obtained from both V0A and V0C detectors at forward rapidity is used to reduce the bias from jets

• Calibration has been performed (re-centering, twist and etc.) for flat distribution

$\Delta \phi$ of Near-side peak : Flat background subtraction

Even after large $|\Delta\eta|$ -gap subtraction + additional subtraction based on v_2 fit on away-side, the flat background is still remaining on both in/out-of-plane.

- Azimuthal variation of trigger particles inside jet cone and EP resolution might cause the flat background
- Average background calculated in $[\pi/2, 3\pi/2]$ is subtracted

Summary

- New methods for accurate background subtractions are introduced
 - Subtractions of Residuals of flow after large $|\Delta\eta|$ -gap and Flat backgrounds
- Study of Peak shapes of jets with two Gaussian functions are presented
 - composed of one narrow peak representing jet and the other showing tails
 - The width on near-side jets in Pb-Pb is broader than the width from *pp*
 - The width of narrow peak on near-side jets in Pb-Pb is similar to the pp
- Study of the Modification of associated particles on near-side jets are presented
 - low $p_{\rm T,assoc}$ are included in $I_{\rm AA}$ results on near-side jets
 - More enhancements of yields in central collisions are observed
 - There are more enhancements of yields at Out-of-plane compared to In-plane
- Model studies are done with AMPT Monte Carlo with different settings
- The trend of widths qualitatively agrees with data points
- None of AMPT reproduces I_{AA} results on near-side jets

Thank you for the attention

Backup

Minwoo Kim (Yonsei University)

Data sets and Cut information

Input data

- Pb-Pb : 2.76 TeV taken in 2011, 8.60 M events
- p-p : 2.76 TeV taken in 2011 (~25.4 M events, without SDD)

7 TeV taken in 2010 (~78.8 M events, LHC10b/c/d)

- Track selection
- $p_{_{T track}} > 200 \text{ MeV/c, } |\eta_{_{track}}| < 0.8$
- TPC-only track cut (cut with clusters, reject kink daughters, d_{xy} < 2.4 cm, d_{z} < 3.2 cm and etc.)
- Two-track efficiency cut applied ($|\Delta \phi^*_{min}| < 0.02$ and $|\Delta \eta| < 0.02$)

• Centrality bins
-
$$0 \approx 10\%$$
 $20 \approx 50\%$ $60 \approx 90\%$
 $\Delta \varphi^* = \Delta \varphi + \arcsin \frac{z_1 e B_z r}{2 p_{\mathrm{T},1}} - \arcsin \frac{z_2 e B_z r}{2 p_{\mathrm{T},2}}$

- 0~10%, 20~50%, 60~90%
- Event plane angle
- determined by V0 (2.8 < η < 5.1 and -3.6 < η < -1.7)

Corrections

$$\frac{d^2 N^{\text{raw}}}{d\Delta\varphi d\Delta\eta}(\Delta\varphi,\Delta\eta,z) = \frac{1}{N_{\text{trig}}^*(z)} \frac{N_{\text{pair}}^{*,\text{same}}(\Delta\eta,\Delta\varphi,z)}{N_{\text{pair}}^{*,\text{mixed}}(\Delta\eta,\Delta\varphi,z)} \beta(z) \qquad \qquad \beta(z) = N_{\text{pair}}^{*\text{mixed}}(0,0,z)$$

$$\frac{d^2 N^{\text{raw}}}{d\Delta\varphi d\Delta\eta} (\Delta\varphi, \Delta\eta) = \frac{1}{\sum_z N^*_{\text{trig}}(z)} \sum_z N^*_{\text{trig}}(z) \cdot \frac{d^2 N^{\text{raw}}}{d\Delta\varphi d\Delta\eta} (\Delta\varphi, \Delta\eta, z) \qquad \begin{array}{l} \text{z bins are combined by} \\ \text{calculated weight, } N^*_{\text{trig}}(z) \end{array}$$

$$N_{\text{pair}}^{\text{corrected}}(\Delta\eta, \Delta\varphi, p_{T,\text{trig}}, p_{T,\text{assoc}}, C) = N_{\text{pair}}^{\text{raw}}(\Delta\eta, \Delta\varphi, p_{T,\text{trig}}, p_{T,\text{assoc}}, C)$$

$$\cdot C_{\text{trckeff}}(p_{T,\text{assoc}}, C)$$

$$\cdot C_{\text{trckeff}}(p_{T,\text{trig}}, C)$$

$$\cdot C_{\text{cont}}(p_{T,\text{assoc}})$$

$$\cdot C_{\text{correlatedcont}}(p_{T,\text{assoc}}, p_{T,\text{trig}}, \Delta\eta, \Delta\varphi)$$

$$N_{\text{trig}}^{\text{corrected}}(p_{T,\text{trig}}, C) = N_{\text{trig}}^{\text{raw}}(p_{T,\text{trig}}, C)$$

$$\cdot C_{\text{trckeff}}(p_{T,\text{trig}}, C)$$

(ref. Analysis Note "Jet-like Peak-shapes in Angular Correlations in Pb-Pb Collisions" https://aliceinfo.cern.ch/Notes/node/33)

I_{AA} with different $|\Delta \phi|$ cuts

• There are not too much difference between 0.4 and 0.6 cuts

