Quarkonium production in CMS

Hyunchul Kim 김현철

(Korea University)

Content

- CMS detector@LHC
- Quarkonia physics motivation
- Result from CMS
 - Charmonia : J/ψ
 - Bottomonia : Υ
- Summary

2

LHC (Large Hadron Collider)

Accelerate proton : 99.9999991% of speed of light From surface ~100m

HIM@Pyeongchang, Korea, 2012/02/21

Hyunchul Kim (Korea University)

LHC (Large Hadron Collider)

27 km in circumference

ALICE

HIM@Pyeongchang, Korea, 2012/02/21

SWITZERLAND

ATLA

Δ

CMS (Compact Muon Solenoid) detector

5

Muon reconstruction mechanism in CMS

Transverse slice through CMS

- With information from inner tracker and muon stations, global muons reconstructed
- Because of the magnetic field and energy loss(2~3 GeV) in the iron yoke, Global muons need p ≥ 3~5 GeV to reach the muon stations, (depending on eta)
- Further muon ID based on track quality (χ^2 , # of hits,...)

6

Dimuon mass plot by the CMS experiment

 At 2010, the integrated luminosity used in the HI analysis corresponds to 7.28 µb⁻¹ for 2.76 TeV PbPb and 225 nb⁻¹ for 2.76 TeV pp collisions

- Cover from low mass to high mass region
- Good dimuon resolution thanks to the tracking
- $p_T > 4.0$ GeV/c : to remove background around the upsilon mass region

Qu onia candidate in Pb Pb at CMS TeV

Physics motivation of quarkonia study (1)

- Quarkonium : flavorless meson whose constituents are a quark and its own antiquark
 - Charmonium(c-cbar), Bottomonium(b-bbar)
- Suppression of quarkonium states : Good candidates to probe the QGP in Heavy-Ion collisions
 - Because of their large mass (mc~1.27 GeV, mb~4.19 GeV), heavy quarks are produced in parton-parton collisions with large momentum transfer Q², at the initial stage of the reaction.
 - T<T_d, heavy quark pair make strongly bound resonance.
 - T>T_d, by Debye screening of the heavy quark binding potential no resonance can be formed.
 - T_d is depend on the binding energy and radius of the resonance.
 - Sequential suppression of the resonances thermometer for the temperature reached in the HI collisions.

State	Y (1S)	J/Ψ (1S)	X _b ' (2P)	X _c (1P)	Y (3S)	Ψ' (2S)
ΔE (GeV/c²)	9.46	3.10	10.26	3.53	10.36	3.68
R ₀ (fm)	0.28	0.50	0.68	0.72	0.78	0.90

Physics motivation of quarkonia study (2)

- the QGP lifetime, non-prompt J/ ψ should not suffer from color screening, but instead may reflect the b-quark energy loss in the medium.
- Energy loss would lead to a reduction of the b-hadron yield at high p_T in PbPb collisions compared to the binary-collision-scaled pp yield.

J/ ψ in pp at $\sqrt{s} = 7$ TeV

- Prompt J/ψ well described by NRQCD
- Non-prompt J/ ψ fall faster at high p_T than expected from FONLL

ψ (2S) in pp at \sqrt{s} = 7 TeV

- Prompt $\psi(2S)$ well described by NRQCD
- accepted by JHEP) Non-prompt $\psi(2S)$ overestimated by FONLL (however, large uncertainty on BR($B \rightarrow \psi(2S)X$)
 - falls faster with pT than expected from FONLL

J/ψ in PbPb at √s_{NN} = 2.76 TeV

- RHIC : lower p_T , but R_{AA} increase with p_T
- CMS : factor 3 suppression for p_T > 6.5 GeV/c

almost no p_T dependence

(do not seem to be observed by RHIC)

CMS

arXiv: 1201.5069 (submitted by JHEP)

- PHENIX : stronger suppression in forward range
- CMS : less suppression in forward range
- Increasing R_{AA} going towards ALICE y range

Hyunchul Kim (Korea University) 15

mpt J/ψ^{PROMPS} MU RAA vs. centrality

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\rm MB}} \frac{N_{\rm PbPb}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\rm PbPb}({\rm cent})}$$

- 0~10% insuppressed by factor 5 with respect to pp
- 50~100%; suppressed by factor 50 factor 1.6 remains
 Similar suppression seen at PHENIXIthought GMS is chighy PHEN while PHENIX is low p

while PHENIX is low pr

Prompt J/ ψ R_{AA} vs N_{part}

$$R_{AA} = \frac{\mathcal{L}_{pp}}{T_{AA}N_{\rm MB}} \frac{N_{\rm PbPb}(J/\psi)}{N_{pp}(J/\psi)} \frac{\varepsilon_{pp}}{\varepsilon_{\rm PbPb}({\rm cent})}$$

- 0~10‰msuppressed by factor 5 with respect to pp
 50~100‰r suppressed by factor 5
- 50~100%; suppressed by factor 1.6 remains
 Similar 50-100% suppressed by factor ~1
- Similar Suppressed by factor ~1.
 Similar Suppression seen at PHENIX lineugh CHAS is chigh PHEN while PHENIX is low pT though at lower pT
- STAR measured less suppression at thigh p_T suppression at suppression at thigh p_T

perpine at Mar RyouN AttoRr Bropt of ty BARAA

- SupSuppression of montproperty by the second second
 - First indications of high-p_T b-quark quenching like light quarks

b fraction compared with earlier results

• Good agreement within uncertainties, between the earlier results at other collision energies and the present measurements.

- Separation of the 3 Y states with good mass resolution
- •Septierinormalized preserviting prediction from PYTHIA is consistent with
- Pythe measurements e, but not in normalization
 - Total cross section overestimated by about a factor 2

(In PbPb at $\sqrt{s_{NN}} = 2.76$ TeV

arXiv: 1201.5069 (submitted by JHEP)

- Extended unbinned maximum likelihood fit
 - Signal
 - Resolution fixed from MC
 simulation
 Peak separation fixed to
 PDG
 - Background
 Packground
 Second order polynomial
- Obvious Upsilon(1S)

S) R_{AA} vs p_T , y and R

• $\Upsilon(1S)$ suppressed at low p_T

- • Are $\sqrt{18}$ suppressed atchigh p_T ?
- • Novo by ious rapidity dependence within the large statistical uncertainties
- suppressed by factor ~2.2 in 0–10% In CMS, Y(1S) suppressed by factor ~2.3 in 0~10% STAR measures $R_{AA}(T(1S + 2S + 3S)) = 0.56 \pm 0.21^{+0.08}_{-0.16}$
- $\frac{1 + \Upsilon(2S + 3S)/\Upsilon(1S)|_{PbPb}}{\stackrel{1}{=} 0.43}$ $\mathsf{STAR} (\mathsf{measures}) \mathsf{R}_{\mathsf{RA}} (\mathsf{fr}(\mathsf{S}1 \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{3} \mathsf{S}) = \mathsf{RQ} (\mathsf{fr}(\mathsf{1S})) \times \mathsf{R}_{\mathsf{RA}} (\mathsf{fr}(\mathsf{S}1 \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{3} \mathsf{S})) = \mathsf{RQ} (\mathsf{S} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{3} \mathsf{S}) = \mathsf{RQ} (\mathsf{S} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{3} \mathsf{S}) = \mathsf{RQ} (\mathsf{S} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{3} \mathsf{S}) = \mathsf{RQ} (\mathsf{S} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{3} \mathsf{S}) = \mathsf{RQ} (\mathsf{S} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{3} \mathsf{S}) = \mathsf{RQ} (\mathsf{S} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{3} \mathsf{S}) = \mathsf{RQ} (\mathsf{S} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{2} \mathsf{S} \mathsf{1} \mathsf{S} \mathsf{1$

🖗n&hul Kim (Korea University) 23

for CMS (0~100%) calculated RAA of Y(1S+2S+3 =207667&VX ≈ 0.43

arXiv: 1201.5069 (submitted by JHEP)

Summary of the results

In pp collisions at $\sqrt{s} = 7$ TeV,

- prompt J/ψ and Y(1S) is well described by models within
 Cuncertainties
 Summary
- J/ψ from B decays is overestimated by FONLL model

In PbPb collisions at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ Prompt J/ ψ suppressed

• $\Upsilon(2S+3S)$ suppressed relative to $\Upsilon(1S)$

- , prompt sJ/uprand J/up from B decays suppressed
- J/ψ from B decays suppressed
- $\Upsilon(1S)$ and $\Upsilon(2S+3S)$ with In pp \mathfrak{L}_{P} is present to 7 $\Upsilon_{e}(1S)$ are
- Dif**Shipples Seich**s described by models within theoretical and experimental uncertainties

arXiv: 1201.5069 (submitted by JHEP)

CMS HI group is analyzing with 2011 HI data now ! Expect new excited result !

HIM@Pyeongchang, Korea, 2012/02/21

