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Non-perturbative particle production mechanism
in heavy-ion collisions

[ color flux tube model

 Treat gluon fields as classical electric fields.
<:| ~ |j> * The electric field decays into particles

by Schwinger mechanism.

LB

7 = 7 The momentum distribution of created particles
and its time-evolution are not fully understood.

We investigate | ° Dynamical view of pair creation
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7 = 7 The momentum distribution of created particles
and its time-evolution are not fully understood.

Electric
Magnetic Color glass condensate (Lappi,McLerran 2006)

-

Both electric and magnetic field exist

We investigate | ° Dynamical view of pair creation

e Effects of a magnetic field




Schwinger mechanism  schwinger 1951

Non-perturbative pair creation mechanism in an uniform and static classical electric field
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Non-perturbative pair creation mechanism in an uniform and static classical electric field
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sudden-switch-on electric field |

To get dynamical view of pair creation,
we need to deal with non-steady electric fields. In a static electric field,
a distribution is also static.
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Canonical quantization in a constant electric field

Klein-Gordon field and Dirac field interacting with
the classical electric field E = (0,0, E) _~ classical field

(8 + ieAL)? + mP)g(x) = 0, V(10 — eAy) — m](z) =0

In the case of non-Abelian electric field E“ = (0,0, E)n® |

gluon field and quark field obey the equations of Ambjorn,Nielsen,Olesen 1979
the same form as in Abelian case, up to first order. Gyulassy,lwazaki 1985
N~ ~=ae_
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Particle picture
is established.

ambiguity in an external field



Instantaneous particle picture

< positive frequency




Instantaneous particle picture
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consequence of pair creation ]

e ' ﬁ positive frequency




Instantaneous particle picture
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Instantaneous particle picture

decompose +¢ , (D) into positive and negative frequency instantaneously
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Field expansion
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Instantaneous particle picture (creation and annihilation operator) is introduced.

[particle pair distribution function
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accelerated according to

boson distribution : :
classical eq. of motion
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accelerated according to a = =

boson distribution : :
classical eq. of motion

a=0.3
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with about 0 momentum Larger @ , longer time

to create first particles.

Pauli’s exclusion principal

fermion distribution {np (t) <1because of



Back reaction

Kluger et al. 1991
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— Bosons, a = 0.01
------ Fermions, @ = (.01
--------- Bosons, @ = 0.3
------- Fermions, a = 0.3

Time scale of back reaction
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- If g°>>0(), t, is the order or less than 1 fm.
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N,g°E, \/N .9%-gE, [GeV ?] from the current without
back reaction
m=0 - i, ~ [f i
mj N, :anumber of inner
—_ N2 ~ 2 d

gEo - Qs ~1GeV degrees of freedom

- If g°>>0(), t, is the order or less than 1 fm.

Furthermore, a longitudinal magnetic field]
makes t,, smaller.

This decay mechanism of an electric field plays an important role
in the initial stage of heavy-ion collisions.
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The strong magnetic field
and suppresses pair creation.
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ectric
Longitudinal magnetic field E=(0,0,E),B=(0,0,B) Magnetic

e Landau level P7=P; + p32, —>(2n+eB (n=012,--)
. Zeeman effect + 2seB

m%\/eB B:O BiO

O w o1 N

independent of B

continuous spectrum spin 0 spin 1/2 Pair creation is

lowest IeveIP eB 0 not suppressed. |

4

The number of modes degenerating
in one Landau level is proportional to B

g

The strong magnetic field
makes particles “heavy”
and suppresses pair creation.




The effect of a magnetic field

Total particle number and current of fermions
are enhanced by the magnetic field.

The time-evolution becomes faster
due to the magnetic field.
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Instability in spin-1 case
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Instability in spin-1 case
e Landau level Pr=P; + pf/ —>(2n+1)eB (n=012,--)
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classical instability Nielsen-Olesen instability

open problem @Wp = \/mcan be pure imaginary.
L &Xp(Fo.t) become unstable. )




Summary

* We have revealed the momentum distribution of created particles
and its time-evolution in uniform electric fields
by defining particle picture instantaneously.
e The time scale of the decay process of the initial electric field
due to back reaction has been estimated.
* We have shown that a magnetic field speeds up
the time-evolution of the fermion system.

Remaining problems

* More realistic configuration of an electromagnetic field,
especially the case that a field exists only inside the light-cone

* Interaction through quantum gauge field (collision)

* Instability in gluon case
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