Nuclear effect on charm production in pA in the CGC framework

H. Fujii (U of Tokyo, Komaba)

w/ F.Gelis, R. Venugopalan

<u>Outline</u>

- Introduction
- CGC framework: MV model+BK evolution
- Open Charm
- Charmonium
- Summary and discussion

Introduction: CGC in A

- Initial condition for AA collisions
 - Small-x partons: $\sqrt{s} x_A = k_1 e^{-y_1} + k_2 e^{-y_2}$
 - Color Glass Condensate in high E limit
 - Boost = seeing short time fluctuations
 - \Rightarrow dense patonic system

 \Rightarrow parton saturation

- In nuclei, larger *partons/trans area* by A^{1/3}
 - Earlier saturation than proton
 - Multiple scatterings in A

Introduction: CGC in A

- Evidence of CGC
 - HERA (DIS): $\tau \sim Q^2/Q_s^2(x)$

- BRAHMS : $R_{dA}(y)$
 - Large xp and small xA

Introduction: Charm

- Heavy flavors: $m_{Q} >> \Lambda_{QCD}$
 - initial hard productions only \Rightarrow pQCD predictions
 - Calibrated impurity probing medium property
 - Caveats: nuclear pdf, intrinsic kT, multiple scattering
- Quarkonia:
 - Rare formation
 - Caveats: longer formation time $O(1/\alpha_m^2)$

formation mechanism not fully understood estimate for cold nuclear effects

Introduction: Why charm in CGC?

- Heavy flavors: $m_{Q} >> \Lambda_{QCD}$ but
 - Produced from gluon fusion
 - Multiple interactions possible at RHIC
 - 1/(2m) ~ 0.07 fm/c vs R_A/γ ~ 0.13 fm
 - 1/(1/α_sm²) ~ 0.3 fm/c

CGC framework

CGC framework: MV Gauss model

- "Valence" partons : random charge on x+ axis
- Small-x partons: classical field

 $[D_{\nu}, F^{\nu\mu}]_a = \delta^{\mu+}\delta(x^-)\rho_a(\vec{x}_{\perp})$

- Compute observables O(ρ)
- Average over W the distribution of ρ $\langle \mathcal{O} \rangle = \int [D\rho_a] W_{x_0}[\rho_a] \mathcal{O}[\rho_a]$
- McLerran-Venugopalan (MV) model
 - Gaussian : W[ρ] = exp $\left[-\int d^2 x \rho(x)_a^2/2\mu^2\right]$
 - $\mu^2 \sim Q_s^2$: mean charge density
 - valid for small x, but α ln(1/x) < 1 e.g., x~0.01
 McLerran, Venugopalan (1994), lancu, Leonidov, McLerran (2001)

CGC framework: pA collision

pA coll = two sources

$$\begin{bmatrix} D_{\nu}, \boldsymbol{F}^{\boldsymbol{\nu}\boldsymbol{\mu}} \end{bmatrix}_{a} = J_{a}^{\boldsymbol{\mu}(0)}$$

$$J_{a}^{\boldsymbol{\nu}(0)} = g\delta^{\boldsymbol{\nu}+}\delta(x^{-})\boldsymbol{\rho}_{\boldsymbol{p},\boldsymbol{a}}(\boldsymbol{x}_{\perp}) + g\delta^{\boldsymbol{\nu}-}\delta(x^{+})\boldsymbol{\rho}_{\boldsymbol{A},\boldsymbol{a}}(\boldsymbol{x}_{\perp})$$

dilute+dense system: g²ρ_A=O(1)

X-

X0

 X^+

- Classical EoM sums tree graphs $O(\rho_A^{\infty})$
 - Multiple scatterings

CGC framework: gluon production

• x-section:

$$\frac{d\overline{N}_g}{d^2 \boldsymbol{q}_{\perp} dy} \sim \frac{\alpha_s}{q_{\perp}^2} \int_{\boldsymbol{k}_{\perp}} \varphi_p(\boldsymbol{q}_{\perp} - \boldsymbol{k}_{\perp}) \phi_A^{gg}(\boldsymbol{k}_{\perp})$$

• "Unintegrated gluon dist.fn." (uGDF) includes multiple interactions

$$\frac{x^{-}}{\rho_{p}} \frac{x^{0}}{\rho_{A}} \frac{x^{+}}{\rho_{A}}$$

$$\begin{split} \phi_A^{g,g} &\sim \quad \boldsymbol{k}_\perp^2 \operatorname{FT} \left\langle U(\boldsymbol{x}) \ U^{\dagger}(\boldsymbol{y}) \right\rangle \\ U(\boldsymbol{x}) &\equiv \quad \mathcal{P} \exp\left[ig^2 \int dz^+ (1/\nabla^2) \rho(z^+, \boldsymbol{x}) \cdot T \right] \\ xg(x, Q^2) &= \quad \frac{1}{4\pi^3} \int dk_\perp^2 \phi_A^{g,g}(x, k_\perp^2) \end{split}$$

Blaizot-Gelis-Venugopalan (2004)

CGC Framework: uGDF

- MV model assumed at x~0.01
- scale $\mu^2 \sim Q_s^2 \sim A^{1/3}$ in the model characterizes targets
 - 0.22 GeV² ... "proton"
 - 2.0 GeV² ... "nucleus?"
- intrinsic kT distribution
- 1/k² perturbative tail

$\ln 1/x$ saturati **CGC** Framework: x-evolution $\ln 0$ ϕ_{gg} (a.u.) $Q_{s}^{2} = 2.0 \text{ GeV}^{2}$ 30 BK equation (large N & A) 20 10 Evolve from x0=0.01 0 1e-05 MV model for x>x0 1e-04 0.001 х - Linear: BFKL sums up (α , y) 0.01 0.1 T00 Nonlinear: gluon fusion effect 10.1k [GeV/c] $\frac{\partial}{\partial V}T_Y(\boldsymbol{k}_{\perp}) = \bar{\alpha}_s \left[\chi(-\partial_L)T_Y(\boldsymbol{k}_{\perp}) - T_Y^{2}(\boldsymbol{k}_{\perp}) \right]$ $\bar{\alpha}_s = \alpha_s N / \pi$, $L \equiv \ln(k_\perp^2 / \Lambda^2)$ $\chi(\gamma) = 2\psi(1) - \psi(\gamma) - \psi(1 - \gamma)$: BFKL kernel ๙๛๛๛๛๛ -กอออออออ

$$T_Y(\mathbf{k}_{\perp}) = \int \frac{d^2 \mathbf{x}_{\perp}}{2\pi \mathbf{x}_{\perp}^2} (1 - \langle \widetilde{U}\widetilde{U}^{\dagger} \rangle) e^{i\mathbf{k}_{\perp} \cdot \mathbf{x}_{\perp}} \phi_{gg}(\mathbf{k}_{T}, \mathbf{x}) =$$

CGC Framework: x-evolution

- BK equation (large N & A)
 - Evolve from x0=0.01
 - Nonlinear: gluon fusion effect
 - Peak moves to higher pT
 - RpA suppressed due to faster saturation for A

CGC Framework: x-evolution

- BK equation (large N & A)
 - Evolve from x0=0.01
 - Nonlinear: gluon fusion effect
 - Peak moves to higher pT
 - RpA suppressed due to faster saturation for A
 - Forward suppression for gluons
 similar to BRAHMS

• Analytic formula to $O(\rho_p^{-1} \rho_A^{\text{infty}})$

- kT factorization is broken, but small
- Collinear approx for proton may be OK
 - = hybrid; cheaper numerical task

HF,Gelis,Venugopalan

- CGC = uGDF for p & A; Hybrid = uGDF for A and xG for p
 - Hard spectrum in medium- x region
 - Small-x contrib is small
 - Look forward

- Ratio of pA/pp
- Hybrid: R = "xG . uGDF(2.0)" / "xG . uGDF(0.22)"
 - Cronin enhancement @ RHIC
 - moves to higher pT w/ y
 - Large suppression @ LHC

Charmonium

Other approach, Kharzeev et al.

M

Charmonium in CEM

Color evaporation model:

Assume separation of pair production and b.s. formations

$$\frac{dN_{J/\psi}}{dYd^2\boldsymbol{P}_{\perp}} \underset{CEM}{=} F_{J/\psi} \int_{4m^2}^{4m_D^2} dM^2 \ \frac{dN}{dYd^2\boldsymbol{P}_{\perp}dM^2}$$

- Effects of dense gluons
 - Initial gluon saturation
 - Multiple scatterings of cc pair

Charmonium in CEM

- Momentum distribution
 - Hardened too much
 - Difficulty of model?

hybrid=kT kick only from A or need improve medium-x?

Charmonium in CEM

Rapidity dependence of RdA

ATHIC2008, Oct.13 H.Fujii

Summary and Discussion

- CGC model for cc production in pA is presented
 - LO(α_{s}), but O(ρ_{A}^{∞})
 - Mid-rapidity at RHIC rather insensitive to small-x
 - Medium-x part is important
 - Saturation is reflected in forward rapidity
 - LHC will be best place to see the saturation
 - CGC model is still in primitive stage

Discussion

- More post-dictions and predictions
 - Improve the CGC model
 - medium-x pdf, onium formation, ..., etc
 - Centrality dep thru Qs(x,b)
 - AA at very forward y
 - Test the model; azimuthal correlation of cc
 - intrinsic kT & multiple scattering

Just preliminary

