v₂ and hydrodynamics ~ Has ideal hydrodynamical limit reached at RHIC ? ~

Hiroshi Masui

Lawrence Berkeley National Laboratory

ATHIC 2008, Oct. 13 - 15 Tsukuba, Japan

Thanks to Y. Bai, Y. Lu, S. Shi, R. Snellings, A. Tang and N. Xu

H. Masui / LBNL

Elliptic flow (v₂)

$$\frac{dN}{d(\phi - \Psi_{\rm RP})} = N \left(1 + 2 \sum_{n=1}^{\infty} v_n \cos\left(n[\phi - \Psi_{\rm RP}]\right) \right)$$

 ϕ : azimuthal angle of emitted particles
 $\Psi_{\rm RP}$: azimuthal angle of the reaction plane
 $v_2 = \langle \cos\left(2[\phi - \Psi_{RP}]\right) \rangle$

- Anisotropic "collective" particle emission in noncentral *A-A* collisions
- Sensitive to early stage
 - ✓ Interactions among particles
 - → Pressure gradient + spatial anisotropy → v₂
 - ✓ v₂ saturate within a few fm/c
- A probe to explore early time dynamics of heavy ion collisions

Elliptic flow (v₂)

$dN = N \left(1 + 2 \sum_{n=1}^{\infty} n \cos(n [\phi - y] (-1)) \right)$
$\left \frac{d(\phi - \Psi_{\rm RP})}{d(\phi - \Psi_{\rm RP})} - N \left(1 + 2 \sum_{n=1}^{\infty} v_n \cos\left(n[\phi - \Psi_{\rm RP}]\right) \right) \right $
ϕ : azimuthal angle of emitted particles
$\Psi_{\rm RP}$: azimuthal angle of the reaction plane
$v_2 = \left\langle \cos\left(2[\phi - \Psi_{RP}]\right)\right\rangle$

- Anisotropic "collective" particle emission in noncentral *A-A* collisions
- Sensitive to early stage
 - ✓ Interactions among particles
 - → Pressure gradient + spatial anisotropy → v₂
 - ✓ v₂ saturate within a few fm/c
- A probe to explore early time dynamics of heavy ion collisions

Partonic flow at RHIC

- Mass ordering of v₂
 - ✓ Radial flow
- Sizable v₂ for multistrange hadrons
- ✓ sensitive to partonic stage
- Number of Quark (NQ) scaling
- ✓ vs (m_T mass)/n_q
- Partonic collectivity

Deconfinement

PHENIX: Phys. Rev. Lett. 98, 162301 (2007)
STAR: Phys. Rev. Lett. 99, 112301 (2007), Phys. Rev. C77, 054901 (2008)
Hydro results: Pasi Huovinen, private communication; P. Huovinen and P. V.
Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 133 (2006)

S. Voloshin, QM2006

Hydro curves are obtained from calculations Kolb, Sollfrank, Heinz, PR**C62** (2000) 054909, made at **b=7 fm in Pb + Pb collisions** and rescaled by 'optical' eccentricity value. The centrality dependence is not fully reflected by these curves, as it is more 'flat' at each given collision energy (very roughly indicated by strait lines)

v₂/ε scales (1/S)dN/dy

 ✓ scaling holds well from AGS, SPS to RHIC, among different systems and methods

• At RHIC, has v₂ reached hydrodynamical limit ?!

Caveats

- Ideal hydrodynamical calculations
 ✓ for pions in Pb + Pb collisions
- Particle composition could change v₂ for inclusive charged hadrons
 - ✓ Heavier hadrons have larger v_2 due to radial flow
- Compare v₂ for identified hadrons
- Extract hydrodynamical limit from the data

A transport model approach, extract hydrodynamical limit from identified hadron v₂ measurements

STAR experiment

Different methods to measure v₂

- ✓ 4-particle cumulant v₂{4}, ZDC-SMD event plane from directed flow v₂{ZDC-SMD} for unidentified charged hadrons
- ✓ For identified hadrons, standard event plane method at the main or forward TPC were used

Transport model approach

- Knudsen number
 - ✓ degrees of equilibration
- Transport model
 - ✓ Reach hydro limit when $K \rightarrow 0$
- Simple formula to describe v₂(K)
 - ✓ Reduces hydro limit ($K \rightarrow 0$) and low density limit (K >> 1)
 - ✓ Reproduce transport model calculations

$$\frac{v_2}{\varepsilon} = \frac{v_2^{hydro}}{\varepsilon} \frac{1}{1 + K/K_0} = \begin{cases} v_2^{hydro}/\varepsilon & (K \to 0) \\ v_2^{hydro}/(\varepsilon \times K/K_0) & (K \gg 1) \end{cases}$$

Fitting procedure

- Fit unidentified charged hadrons
 - ✓ Extract parton cross section
 - Note: one can only extract the product $K_0 \sigma c_s$
- Fit all identified hadrons simultaneously
 - $\checkmark \sigma$ is fixed from fitting result for unidentified hadron
- $K_0 = 0.7$ and $c_s^2 = 1/3$ (fixed)
 - ✓ K_0 value is determined so as to reproduce the transport model calculation ($K_0 = 0.7 \pm 0.03$)* *C. Gombeaud and J.-Y. Ollitrault, PRC77, 054904 (2008)

Only Glauber initial condition is considered

H. Masui / LBNL

$v_{2}{4} & v_{2}{ZDC-SMD}$

- v₂{4} and v₂{ZDC-SMD}
- ✓ sensitive to the true reaction plane
- ✓ scaled by standard eccentricity
- Parton cross section

$$✓$$
 σ = 4.1 ± 1.2 mb

⇒ Extract hydro limit for identified hadrons with $K_0 = 0.7$, $c_s^2 =$ 1/3 and $\sigma = 4.1$ mb

Centrality dependence of $\langle v_2 \rangle$

BERKELEY

- Transport model fit well describe the data
- "Fitting" hydro limits (arrows) increase as a function of mass
- Ideal hydro v_2/ϵ
 - ✓ ε from "optical" glauber model

PHENIX π , K and p: preliminary, nucl-ex/0604011v1 STAR K⁰_S, Λ , Ξ : Phys. Rev. C77, 054901 (2008) STAR ϕ : Phys. Rev. Lett. 99, 112301 (2007) Ideal Hydro. : P. Huovinen and P. V. Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 163 (2006) and private communication

Hydro limit vs mass

PHENIX π , K and p: preliminary, nucl-ex/0604011v1 STAR Λ , Ξ : Phys. Rev. C77, 054901 (2008) STAR ϕ : Phys. Rev. Lett. 99, 112301 (2007) Ideal Hydro. : P. Huovinen and P. V. Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 163 (2006) and private communication

Ideal hydro : Average over all centrality bins

- "Fitting" hydro limits increase as a function of mass
 - ✓ Mass dependence is similar to that from ideal hydro
 - Radial flow at partonic stage
 - Early decoupling for (multi-)strange hadrons ?

Hydro limit vs mass

PHENIX π , K and p: preliminary, nucl-ex/0604011v1 STAR Λ , Ξ : Phys. Rev. C77, 054901 (2008) STAR ϕ : Phys. Rev. Lett. 99, 112301 (2007) Ideal Hydro. : P. Huovinen and P. V. Ruuskanen, Annu. Rev. Nucl. Part. Sci. 56, 163 (2006) and private communication

Ideal hydro : Average over all centrality bins

- "Fitting" hydro limits increase as a function of mass
 - \checkmark Mass dependence is similar to that from ideal hydro
 - Radial flow at partonic stage
 - Early decoupling for (multi-)strange hadrons ?

Universal curve

✓ different particles, methods, systems and experiments

Universal curve

.....

✓ different particles, methods, systems and experiments

• Universal curve

✓ different particles, methods, systems and experiments

Universal curve

✓ different particles, methods, systems and experiments

✓ different particles, methods, systems and experiments

Constrain shear viscosity

- √ η/s ~ 5/4π in 0 40 % centrality
- ✓ Closer to ideal hydro in more central collisions

Conclusions

• Extract hydrodynamical limits for identified hadrons

- ✓ Fitting results well describe the centrality dependence of v_2
 - Simultaneous fit by the simple formula motivated from the transport model
- ✓ Universal curve is obtained
 - for different methods, particle species, systems and experiments
- ✓ "Fitting" hydrodynamical limits increase as a function of mass
 - similar mass dependence to that from ideal hydro calculation
- ✓ Simultaneous fit for identified hadrons gives a constraint on the shear viscosity as a function of centrality
 - η /s ~ 5/4 π at in 0 40 % centrality, close to hydro limit in more central collisions

Ideal hydrodynamical limit has not been reached within the transport model approach (with Glauber initial conditions)

Extra slides

H. Masui / LBNL

What ϵ we should use ?

2-particle correlation

- Event plane method : v₂{EP₂}, v₂{BBC}, v₂{FTPC}, v₂{etaSub}
- Two particle cumulant : v₂{2}
- Scalar product method : v₂{uQ}
- Sensitive to "Participant Plane"
 Scaled by participant eccentricity ε_{part}

Multi-particle correlation

- ZDC-SMD event plane : v₂{ZDC-SMD}
- q-distribution method: v₂{q}
- 4 or higher order cumulant : $v_2\{n\}$, $n \ge 4$
- Lee-Yang zero method : v₂{LYZ}
- Bessel-Transform method : v₂{BT}
- Sensitive to "Reaction Plane"
- Scaled by standard eccentricity ε_{std} or ε {4}

$$\varepsilon_{part} = \frac{\sqrt{(\sigma_y^2 - \sigma_x^2)^2 + 4\sigma_{xy}^2}}{\sigma_y^2 + \sigma_x^2} \to \frac{\{y^2\} - \{x^2\}}{\{y^2\} + \{x^2\}} = \varepsilon_{std} \ (\{x\} = \{y\} = \{xy\} = 0)$$

$$\sigma_x^2 = \{x^2\} - \{x\}^2, \quad \sigma_y^2 = \{y^2\} - \{y\}^2, \quad \sigma_{xy} = \{xy\} - \{x\}\{y\}$$

- Methods based on multi-particle correlation are sensitive to the true reaction plane
 - ✓ should be scaled by standard eccentricity ϵ_{std}

Stronger flow in central collisions

In more central collisions

......

BERKELEY LAP

- ✓ Stronger v_2/ϵ and peak position shift toward higher p_T
- ✓ Applicable range for hydro extends to higher p_T

Knudsen number

Yuting Bai, SQM2008

- v₂{4} and v₂{ZDCSMD}
 - ✓ sensitive to reaction plane
 - scaled by standard eccentricity
- Knudsen number is constrained by simultaneous fit for charged hadron v₂{4}, v₂{ZDCSMD} as well as identified hadrons
 - ✓ $K \sim 0.3$ 1 from central to peripheral collisions

$V_4/(V_2)^2 V_5 p_T$

Hydro, Boltzmann calculations: J-Y. Ollitrault

$$v_2 \propto K^{-1}$$
, $v_4 \propto K^{-1}$ for small K^{-1}
 $\rightarrow \frac{v_4}{(v_2)^2}$ decreases with K^{-1}

- $v_4/(v_2)^2$ reach a minimum when $K \rightarrow 0$
- Comparison with a transport model
 - ✓ Model calculations approach hydro limit when $K \rightarrow 0$
 - ✓ The data is consistent with the transport model calculation when K > 0.5
 - Knudsen number is consistent with that from identified hadron v₂
- Hydro limit has not reached at RHIC !

Constrain shear viscosity

 $\checkmark \eta/s$ decrease in more central collisions \rightarrow stronger flow