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Plan

Energy loss (jet quenching)
Photons
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E-loss - The Issue

QGP makes jets lose energy
Radiational (Inelastic)

k
p p’

~gT

~T

+ others

Elastic

k

p p’

~T

+ others~gT

Can we use this to characterize QGP?
Effects on photons ?
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E-loss - The Big Picture

∑∫ (
fa/A ⊗ fb/A ⊗

dσab→cd

dx

)
⊗ (E-loss module)⊗ Dfrag

Parton-parton scattering:
(

fa/A ⊗ fb/A ⊗
dσab→cd

dx

)
Dfrag: As in vacuum but with reduced energy.
Energy loss module – Three separate pieces

Energy change rate:
dΓ

dtdk
(ε, k ; T ): Thermal QCD

Evolution (q, g coupled + keeps track of the radiated q, g):

dP(ε, t)
dt

=

∫
dk

dΓ(ε+k , k)

dtdk
P(ε + k , t)−

∫
dk

dΓ(ε, k)

dtdk
P(ε, t)

T (x, t), uµ(x, t): Must be obtained independently.

Still schematic. There are theoretical and conceptual problems to
further consider.
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McGill-AMY approach

Uses full leading order thermal QCD/QED rates - LPM and BH
limits are both correctly included.

Dynamic medium: Thermal quarks and gluons in the medium. T
and αs characterizes the medium.

Keeps track of radiated gluons and qq̄ pairs.

Thermal absorption included.

The “jet” propagates in a hydrodynamically evolving medium.

Flow is taken into account: Perform calc in the local rest frame,
and then boost back to the lab frame.
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Rough Idea - Radiational (following BDMPS)

k
p p’

~gT

~T

+ others

Point here: Radiated gluon also undergoes multiple scatterings.
Bethe-Heitler Spectrum (low ω)

ω
dI
dω

≈ αsNc

π

Medium dependence comes through a scattering length scale l

ω
dI

dωdz
≈ 1

l
αsNc

π
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Rough Idea - Radiational (following BDMPS)

If all scatterings are incoherent

l = lmfp = 1/ρσ and ω
dI

dωdz
≈ αsNc

πlmfp

Coherence matters when multiple scatterings are needed to get
O(1) phase change: 1 ∼ lcohω(1− k̂·v̂) ∼ lcohω

〈
θ2
〉

Both the radiated gluon and the original parton undergo random
walk: 〈

θ2
〉
≈ Ncoh

(
θ̄2

g + θ̄2
q

)
≈ lcoh

lmfp

(
µ2

ω2 +
µ2

E2

)
or

lcoh = lmfp

√
ω

ELPM

√
E2

E2 + ω2 and ω
dI

dωdz
≈ αs Nc

πlmfp

√
ELPM

ω

for E � ω and ω > ELPM ≡ µ2lmfp ∼ T .
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Rough Idea - Collisional (Following Bjorken)

k

p p’

~T

+ others~gT

Energy loss per unit length

dE
dz

≈
∫

d3k ρ(k)

∫
dq2 (1− cos θpk )∆E

dσel

dq2

where
ρ(k): density, (1− cos θpk )∆E ≈ q2/2k : flux factor

Elastic cross-section (Coulombic)
dσ

dq2 ≈ CR
2πα2

s

(q2)2
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Rough Idea - Collisional

with thermal ρ, this yields(
dE
dz

)
coll

∝ α2
sT 2 ln(E/αsT )

Compare: (
dE
dz

)
rad
∝ α2

sT
√

TE

NOTE: We actually need ωdI/dωdz in place of dE/dz.

Jeon (McGill) E-Loss ATHIC2 9 / 55



university-logo

Rough Idea - The behavior of RAA

Use BDMPS expression for the quenching factor for 1/pn with a large
n but with the energy range extended to ω < 0:

RAA(p) ≈ exp
(
−
∫ ∞

−∞
dω

∫ t

0
dt ′ (dΓinel+el/dωdt)(1− e−ωn/p)

)
For the radiation rate, use simple estimates

dΓ

dωdt
≈ α

πω

Nc

lmfp
for 0 < ω < lmfpµ

2

dΓ

dωdt
≈ α

πω
Nc

√
µ2

lmfpω
for lmfpµ

2 < ω < lmfpµ
2(L/lmfp)

2

dΓ

dωdt
≈ α

π|ω|
Nc

lmfp
e−|ω|/T for ω < 0
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Rough Idea - RAA

For elastic energy loss,

Rel
AA ≈ exp

(
−
∫ ∞

−∞
dω

∫ t

0
dt ′ (dΓel/dωdt)(1− e−ωn/p)

)
≈ exp

(
−t
(

dE
dt

K (ω0)

|ω0|

))
≈ exp

(
−t
(

dE
dt

)(
n
p

)(
1− nT

p

))
valid for p > nT and we used

K (ω0) = (1 + nB(|ω0|))(1− e−|ω0|n/p) + nB(|ω0|)(1− e|ω0|n/p)

≈ |ω0|
(

n
p

)(
1− nT

p

)
for small ω0
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Rough Idea - RAA
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Upper line: Without elastic
Lower line: With elastic
Flat R is produced in both cases up to O(10 T ).
R just not that sensitive to p in the RHIC-relevant range.
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Gluon Radiation Calculation

Amplitude to radiate: Need to sum over
all N and all M and all possible radia-
tion points. Then square it to get the
radiation rate (BDMPS).

. . .

t1 t2 t3 tN

s1
s2

sM

p

k

p   k

. . . .
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Diagrams

µ ∼∼ gT

Σ
pinching

ImRate

: HTL resummed
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Why is this so hard?

Collinear enhancement in photon & gluon radiations
Aurenche, Gelis, Kobes and Zaraket, PRD58:085003,1998, Arnold,
Moore and Yaffe (AMY), JHEP 0206:030,2002; JHEP 0112:009,2001;
JHEP 0111:057,2001

...

Leading order

makes these leading order
as well

Collinear enhancement Need to resum all these, too
(AMY)

: Hard Thermal Loop
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Photon SD (Simpler) – Sketch

P

P+K

K
Q

P−QP

P+K P+K−Q

P

P+K

K K

F (P, P + K ) = GR(P)GA(P + K )V (P, K )

+ GR(P)GA(P + K )G(Q)F (P −Q, P −Q + K )

Bare vertex: V (P, K ), Resummed vertex: F (P, K )
p0 integrated legs (with K 2 = 0):∫

dp0GR(P + K )GA(P) ≈∫
dp0 1

EpkEp

1
p0 + k0 − Epk − iΓpk/2

1
p0 − Ep + iΓp/2

≈ i
EpkEp

1
δE(p, k)− i(Γpk + Γp)/2
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Photons – Cont.

Integral eq (schematic):

(iδE(P, K ) + Γ)F (P, P + K ) = V (P, K ) + G(Q)F (P −Q, P −Q + K )

or

iδE(P, K )F (P, P + K ) = V (P, K )

+ G(Q) [F (P −Q, P −Q + K )− F (P, P + K )]

Γ turned out to be independent of P, K :

Γ ≈
∫

Q
G(Q)

with

G =
m2

D

q2
⊥(q2

⊥ + m2
D)
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Gluon radiation is similar but more complicated ...

Any number of gluon lines can attach like this.

These pinch

These pinch

Need to resum.
Adding one more rung = O(1).

These pinch gT

gT

gT
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SD equation for the vertex

Equation for the vertex F

2h = iδE(h, p, k)F(h) + g2
∫

d2q⊥
(2π)2 C(q⊥)×

×
{

(Cs − CA/2)[F(h)− F(h−k q⊥)]

+(CA/2)[F(h)− F(h+p q⊥)]

+(CA/2)[F(h)− F(h−(p−k) q⊥)]
}

,

δE(h, p, k) =
h2

2pk(p−k)
+

m2
k

2k
+

m2
p−k

2(p−k)
−

m2
p

2p
.

m2: Medium induced thermal masses.
h = (p× k)× e|| — Must keep track of both p⊥ and k⊥ now. For
photons, we could just set k⊥ = 0.
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Gluon Radiation Rate

Rate using F

dΓg(p, k)

dkdt
=

Csg2
s

16πp7
1

1± e−k/T
1

1± e−(p−k)/T ×

×


1+(1−x)2

x3(1−x)2 q → qg

Nf
x2+(1−x)2

x2(1−x)2 g → qq
1+x4+(1−x)4

x3(1−x)3 g → gg


×
∫

d2h
(2π)2 2h · Re F(h, p, k) ,

where x ≡ k/p is the momentum fraction in the gluon (or either quark,
for the case g → qq). h ≡ p× k: 2-D vector. O(gT 2)

Correctly incorporates both the BH limit and the LPM limit.

Jeon (McGill) E-Loss ATHIC2 20 / 55



university-logo

Elastic scattering rate

Coulombic t-channel dominates

K

Q

P P’

K’ K

Q

P P’

K’

K

Q

P P’

K’ K

Q

P P’

K’
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Elastic scattering rate

We need

dE
dt

=
1

2E

∫
k ,k ′,p′

δ4(p + k − p′ − k ′) (E − E ′)|M|2 f (Ek )[1± f (E ′
k )]

= Crπ α2
sT 2

[
ln(ET/m2

g) + Dr

]
where Cr and Dr are channel dependent O(1) constants.
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Putting them together

Fokker-Planck Eqn.

dPqq̄(p)

dt
=

∫
k
Pqq̄(p+k)

dΓq
qg(p+k , k)

dkdt
− Pqq̄(p)

dΓq
qg(p, k)

dkdt

+2Pg(p+k)
dΓ

g
qq̄(p+k , k)

dkdt
,

dPg(p)

dt
=

∫
k
Pqq̄(p+k)

dΓq
qg(p+k , p)

dkdt
+Pg(p+k)

dΓ
g

gg(p+k , k)

dkdt

−Pg(p)

(
dΓ

g
qq̄(p, k)

dkdt
+

dΓ
g

gg(p, k)

dkdt
Θ(k−p/2)

)
Γ = Γel + Γinel
Inelastic part is solved as it is.
Elastic part – Soft exchange dominated.
Implement it as drag + diffusion
Get T (x , t) and uµ(x , t) from 3+1 D Hydro
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(3+1)-D relativistic hydrodynamics (Nonaka & Bass)

Based on conservation laws: ∂µT µν = 0, ∂µjµ = 0.

For ideal fluid, T µν = (ε + p)UµUν − pgµν , jµ = nBUµ.

EOS: Bag model + Hadron with extended volume
Initial conditions: ε(x , y , η) = εmaxW (x , y ; b)H(η),
nB(x , y , η) = nBmaxW (x , y ; b)H(η)

(G
eV

/fm
 )3

ε

x (fm) 

y (fm)

b=2.4 fm 

 10
 20
 30
 40

 0
−10

 0
−5

 5
 10−10

−5
 0

 5
 10

0

10

20

30

40

(G
eV

/f
m

3 )
Particle spectra: Cooper-Frye Formula

E
dNi

d3p
=

∫
Σ

p · dσ
gi

(2π)3
1

exp [(p · U − µi)/Tf]± 1
Nonaka and Bass, Phys.Rev.C75:014902,2007
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Following calculations mostly by

Guangyou Qin (Rad + Coll, 3+1 Hydro)
and

Simon Turbide (Rad only, Bjorken Hydro)

with C. Gale, S. Jeon, G. Moore and J. Ruppert
(McGill-AMY)
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Example evolution of a single jet (Qin)

The final momentum distribution P(E , tf ) of a single quark jet after
passing through RHIC medium (b = 2.4 fm)

0 10 20 30 40
E (GeV)

0

0.1

0.2

0.3

0.4

0.5

P(
E

)

total
radiative
collisionalE

i
 = 16 GeV

E
i
 = 30 GeV

Medium described by (3+1)D ideal hydrodynamics.
The jet starts at the center and propagates in plane.
Jet energy loss turned off in hadronic phase.
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Averaged energy loss of a single jet (Qin)

The averaged energy loss of a quark jet after passing through
RHIC medium (b = 2.4 fm)

0 5 10 15 20 25 30
E

i
 (GeV)

0

2

4

6

8

10

12

<
∆E

>
 (

G
eV

)
total
radiative
collisional

Averaged energy: 〈E〉 =
∫

dEEP(E)/
∫

dEP(E)
Qin et al., arXiv:0710.0605 [hep-ph], PRC, in press, arXiv:0705.2575 [hep-ph]
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Pion Production

Fold in the nuclear geometry, local production rate, jet angles, with
the energy loss

dNAA

dyd2pT
=

〈Ncoll〉
σin

∑
a,b,c,d

∫
dxadxb gA(xa, Q)gA(xb, Q)

× Kjet
dσa+b→c+d

dt
D̃π0/c(z, Q)

πz

with D̃π0/c(z, Q) =

∫
d2r⊥ P(r⊥)D̃π0/c(z, Q, r⊥, n), and

D̃π0/c(z, Q, r⊥, n) =∫
dpf

z ′

z

(
Pqq/c(pf ; pi ;∆t) Dπ0/c(z

′, Q) + Pg/c(pf ; pi ;∆t) Dπ0/c(z
′, Q)

)
with z = pT /pi and z ′ = pT /pf .
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RAA at RHIC - π0 - Radiation only (Turbide)

Ti = 370 MeV, dN/dy = 1260. 1-D Bjorken expansion.
Best αs = 0.33 S.Turbide, C.Gale, S.J. and G.Moore, PRC72:014906,2005
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RAA at RHIC – π0 - Full (Qin)

0

0.2

0.4
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0.8

1

R
A

A

PHENIX 0 - 5%, Preliminary

0 5 10 15 20 25
p

T
 (GeV/c)

0

0.2

0.4

0.6

0.8

R
A

A

PHENIX 20 - 30%, Preliminary

total, rad, coll
Strong coupling αs tuned from 0.33 to 0.27
Qin et al., arXiv:0710.0605 [hep-ph], PRC, in press, arXiv:0705.2575 [hep-ph]
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RAA vs. reaction plane at RHIC (Qin)

RAA for π0 in plane and out of plane at RHIC (different b)

0 5 10 15 20 25
p

T
 (GeV/c)

0

0.1

0.2

0.3

0.4

R
A

A

b = 2.4 fm, φ = 0
b = 2.4 fm, φ = π/2
b = 4.5 fm, φ = 0
b = 4.5 fm, φ = π/2
b = 7.5 fm, φ = 0
b = 7.5 fm, φ = π/2

b = 2.4 fm

b = 7.5 fm

b = 4.5 fm

Jets propagating out of plane (φ = π/2) are suppressed more
than in plane (φ = 0)
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PHENIX data from QM06 (Pantuev’s talk)
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LHC RAA (Turbide)
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What now?

Where are we now?
Most models have jet quenching under control in the
hadronic part.
But RAA too simple to be the full story.

More information? – γ production
Need:

Thermal photon radiation rate (AMY)
Jet bremsstrahlung rate (AMY)
Jet-photon conversion rate (Fries, Mueller, Srivastava)
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Various sources of photons

Direct photons: Fragmentation
photons:

Bremsstrahlung
photons:

Jet-conversion
photons:

Thermal
photons:
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Photon Radiation

Arnold, Moore and Yaffe (AMY), JHEP 0206:030,2002; JHEP 0112:009,2001; JHEP

0111:057,2001

Thermal Radiation rate:

ω
dR
d3k

= − gµν

(2π)3
1

eω/T − 1
Im ΠR

µν(k)

Physical process:
t1 t2 t3 tN

p p   k

. . . .

kγ

Need to sum over the scattering centers and the radiation
points.
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Remember this slide?

Collinear enhancement in photon & gluon radiations
Aurenche, Gelis, Kobes and Zaraket, PRD58:085003,1998, Arnold,
Moore and Yaffe (AMY), JHEP 0206:030,2002; JHEP 0112:009,2001;
JHEP 0111:057,2001

...

Leading order

makes these leading order
as well

Collinear enhancement Need to resum all these, too
(AMY)

: Hard Thermal Loop
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Schwinger-Dyson Equation
P

P+K

K
Q

P−QP

P+K P+K−Q

P

P+K

K K

Arnold, Moore and Yaffe,
JHEP 0112 (2001) 009

The same formalism can
be used to calculate ther-
mal radiation (P ∼ T )
and bremsstrahlung from
jets (P � T ).
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Jet-Thermal Conversion

~~ kk’ ~~ kk’

q << k q << k

k k

Fries, Mueller, Srivastava (nucl-th/0208001)

dR
dyd2pT

=
∑

f

(ef

e

)2 T 2ααs

8π2 [fq(
−→pγ) + fq̄(

−→pγ)]

[
2 ln

(
4EγT

m2

)
− C

]
with C ≈ 2.33.
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Putting everything together...

Putting everything together for γ...
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γ – Baseline

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
p

T
 (GeV/c)

10
0

10
1

10
2

10
3

10
4

E
dσ

γ /d
3 p 

(p
b 

G
eV

-2
)

PHENIX
direct + fragmentation

p+p at s
1/2

=200GeV
all scales = 1xp

T

Using P.Aurenche et al.’s pQCD program.
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γ – Composition (Turbide)
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γ – Our Calc vs. PHENIX Data (Turbide)
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γ – Our Prediction vs. Data (Turbide)
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γ – Composition – LHC (Turbide)
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γ – LHC prediction (Turbide)
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2 p T
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G
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]

pQCD+QGP+HG 
pQCD+QGP (no jet-th) + HG
pQCD (no E-loss)

Photons at LHC
Pb + Pb, s

1/2
=5500 GeV

yγ = 0 

T
i
=845 MeV
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G. Qin - Photon production at RHIC

Photon production in Au+Au collisions at RHIC from various sources:
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PHENIX Prelim. 0-10%
direct photon
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T
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3+1 D hydro. Rad + Coll E-loss.
Jet-plasma photons (bremsstrahlung and jet-conversion) are
significant to understand the photon data in AA collisions
Qin et al, in preparation
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G. Qin - Application: Photon-tagged jets

At LO, Compton scattering and annihilation process:

q

g

γ

q

q

q̄

γ

g

Wang, Huang, Sarcevic, PRL 77, 231-234 (1996)
Proposed advantage for photon-tagged jets (at LO):

Ejet = Eγ

The photon is strongly correlated with the away-side jet
→ a calibrated probe of the QGP.

How does it look like in a full calculation?
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Results for photon-hadron correlations (Qin)

Centrality dependence of IAA and yield per trigger for away-side π0:
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P(Eγ)
Both IAA and yield per trigger are consistent with current data!
Qin et al, in preparation
Data from QM2008: Mohanty’s plenary talk and Hamed’s parallel talk
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G. Qin - Contributions from different source of photons

Probability distributions of the initial
jets tagged by different photons:
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Different contributions to yield per
trigger for away-side π0:
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Direct photon-tagged jets dominate at lower pT , jet-plasma and
fragmentation photon-tagged jets dominated at higher pT .
Qin et al, in preparation
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G. Qin - What is the importance of additional
processes?

IAA for the away-side π0 for different photon triggers:
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Eγ = 8-16 GeV

Jet-plasma interaction and fragmentation are important for studying
photon-hadron correlations, even dominant close to photon-trigged
energy.
Qin et al, in preparation
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Conclusions and Caveats

Calculated Jet Quenching with radiational and collisional energy
loss
Radiational part plays bigger role, but collisional part not
negligible.
Best fit αs reduced by 10 %
Important to use the full momentum distribution at any given time,
not just dE/dx .
Geometry and 3+1 D expansion included.
Best we can do using perturbative results (We keep track of
radiated partons as well)
Good description of existing data – pions and photons.
For photons, jet-thermal interaction is crucial.
LHC predictions – Should be better since pQCD should work
better there.
Photon spectra + Photon tagged jets - Preview version at HP08,
full version soon
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Conclusions and Caveats

Calculations consistent in the g � 1 limit for momenta
T < p. Yet for quantitative calculations, we needed αs ≈ 1/3 or
g ≈ 2! So in reality, one must sum all diagrams, not just pinching
part of the ladder diagrams!

At this leading order, αs is an overall factor. So one
might hope that the structure of the solution is OK.
Right now, this is best we can do with perturbative
calculation.
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Included in the PDF scale dependence

Correctly dealt with in the AMY−McGill approach

Part of this in the fragmentation function

These two can interfere.
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Conclusions and Caveats

What about jet correlations? – Need to keep track of the evolution
of the joint probability function of two jet energies. Much harder
than single particle distributions!
Most energy-loss calculations these days do get RAA right. Is
there an experimental way to distinguish?
– Photon bremsstrahlung + jet-photon conversion should be able
to distinguish different scenarios. How to fish that out of all others
is another matter.
It is important to keep in mind that photon tagging is not 100 %
efficient!
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