Explore the QCD Phase Diagram

Nu Xu Lawrence Berkeley National Laboratory

Many Thanks to the Organizers

ATHIC 2008, Tsukuba, Japan, Oct. 13 - 15, 2008

Outline

1) Introduction

2) Recent experimental data

- High p_T results
- Partonic collectivity at RHIC

3) Outlook

- Heavy quark measurements
 - → thermalization
- RHIC beam energy scan
 - → QCD tri-critical point

rrrrrr

- Identify and study the properties of the matter (EOS) with partonic degrees of freedom.
- Explore the QCD phase diagram.

Bulk Properties:

- (1) Spectra and anisotropies
- (2) Correlation and fluctuations
- (3) Heavy quark hadron collectivity

(4) ...

Penetrating Properties:

- (1) Leading hadron spectra
- (2) Jets production
- (3) High p_T triggered correlations
- (4) Heavy quark production ...

STAR Physics Focus

1) Heavy-ion program

- Study *medium properties, EoS*
- pQCD in hot and dense medium

2) RHIC beam energy scan

- Search for *critical point*
- Chiral symmetry restoration

Polarized spin program

- Study proton intrinsic properties

Forward program

- Study low-x properties, search for CGC
- Study elastic (inelastic) processes (pp2pp)
- Investigate *gluonic exchanges*

Relativistic Heavy Ion Collider (RHIC)

Brookhaven National Laboratory (BNL), Upton, NY

STAR Detector

mm

Au + Au Collisions at RHIC

STAR HFT

Heavy quark hadrons

Strange hadrons

Suppression and Correlation

In central Au+Au collisions: hadrons are suppressed and back-to-back 'jets' are disappeared. Different from p+p and d+Au collisions.

Energy density at RHIC: $\mathcal{E} > 5 \text{ GeV/fm}^3 \sim 30 \mathcal{E}_0$

Parton energy loss:	Bjorken	1982
" <u>Jet quenching</u> ":	Gyulassy & Wang	1992

...

PYTHIA (V6.205, MSEL=1) and GEANT are used to get trigger efficiency to correct spectra in triggered events.

High p_T Results for proton Spectra

p+p collisions at RHIC:

pQCD based calculations provide a reasonable fit to data

STAR PRL, 98, 192301 (2007) R AA STAR charged hadrons p_r > 6 GeV/c I: DVGL R : BDMPS c+b DGLV R+EL van Hees EL d+Au Au+Au (0-5%) 10⁻¹ 2 4 6 8 10 p_{_} (GeV/c)

 Non-photonic electrons decayed from - charm and beauty hadrons

2) At $p_T \ge 6$ GeV/c,

 $R_{AA}(n.e.) \sim R_{AA}(h^{\pm})!$

contradicts to naïve pQCD predictions

Surprising results -

- challenge our understanding of the energy loss mechanism
- force us to RE-think about the collisional energy loss
- Requires direct measurements of C- and B-hadrons.

"Golden Probe" of QCD Energy Loss

- This probe is valuable for comparison with di-hadron correlations
- Goal: Full reconstructed kinematics: real fragmentation function D(z)

Leading Order High Seed Cone(LOHSC) R=0.4, $p_T = 1$ GeV/c, seed = 4.6 GeV/c Statistical errors only. **MB-Trig**: Good agreement with N_{bin} scaled p+p collisions

HT-Trig: Large trigger bias persists at least to 30 GeV.

Relative normalization systematic uncertainty: ~50%

Resolution effect corrected assuming Pythia fragmentation.

Further statistics of MB is needed to assess the bias in HT Trigger.

First step towards jet reconstruction in heavy ion collisions.

Search for Mach Cone

Rich underlying physics: jet, bulk, jet-medium interaction, medium responses,... N. Armesto et al.; R. Hwa; A. Majumder, et al.; E. Suryak; S. Voloshin; C.Y. Wong

Not fully understood.

Two Particle Correlations

- 1) Amplitude and η widths: *sharp transition*
- 2) Deviations from binary scaling: *physics unique to HI collisions*
- 3) The observed correlation: *Hijing under predicted* the correlation
- 4) Inconsistent with the medium thermalization(?)

Modification of energetic 'jets' in the medium!

ϕ -meson Flow: Partonic Flow

"φ-mesons are produced via coalescence of seemingly thermalized quarks in central Au+Au collisions. This observation implies *hot and dense matter with partonic collectivity* has been formed at RHIC"

> STAR: Phys. Rev. Lett. <u>99</u> (2007) 112301// * STAR, Duke, TAMU ** OZI rule

> Larger v_2/ε_{part} indicates stronger flow in more central collisions. > NO ε_{part} scaling.

The observed n_{a} -scaling does not necessarily mean thermalization.

200 GeV Au+Au collisions at RHIC, strongly interacting matter formed: Jet energy loss: R_{AA} Strong collectivity: v_0 , v_1 , v_2 Hadronization via coalescence: n_q -scaling

Questions:

Has the thermalization reached, or how large is the η at RHIC?

When (at which energy) does this transition happen?

What does the QCD phase diagram look like?

Quark Masses

- 1) Higgs mass: electro-weak symmetry breaking. (current quark mass)
- 2) QCD mass: Chiral symmetry breaking. (constituent quark mass)
- New mass scale compared to the excitation of the system.
- Important tool for studying properties of the hot/dense medium at RHIC.
- Test pQCD predictions at RHIC.

Decayed e p_T vs. b- and c-hadron p_T

Key: Directly reconstructed heavy quark hadrons!

Pythia calculation Xin Dong, USTC October 2005

Charm Hadron v₂

- 200 GeV Au+Au minimum biased collisions (500M events).

- Charm collectivity \approx drag/diffusion constants \approx medium properties!

rrrrr

Charm Hadron R_{CP}

- 200 GeV Au+Au minimum biased collisions (|y|<0.5 500M events).
- Charm R_{AA} ⇒ energy loss mechanism, e.g. collisional vs. radiative!

The QCD Critical Point

- LGT prediction on the transition temperature ${\sf T}_{c}$ is robust.

- LGT calculation, universality, and models hinted the existence of the critical point on the QCD phase diagram* at finite baryon chemical potential.

- Experimental evidence for either the critical point or 1st order transition is important for our knowledge of the QCD phase diagram*.

* Thermalization has been assumed

M. Stephanov, K. Rajagopal, and E. Shuryak, PRL <u>81</u>, 4816(98) K. Rajagopal, PR <u>D61,</u> 105017 (00)

> http://www.er.doe.gov/np/nsac/docs/Nuclear-Science.Low-Res.pdf