

Heavy-Ion Physics with CMS at the LHC

Heavy Ion Meeting Bolek Wyslouch Massachusetts Institute of Technology

LHC: new energy frontier for QCD matter

CMS detector at the LHC

Plii

ECAL

PbWO4 crystals

Scintillating

CMS detector at the LHC

Length: 21.6 m Diameter: 15 m Weight: ~12500 tons Magnetic Field: 4 Tesla

TRACKER

Si Pixels

Silicon Microstrips

MUON BARREL

Drift Tube **Resistive Plate** Chambers (DT) Chambers (RPC)

Cathode Strip Chambers (CSC) Resistive Plate Chambers (RPC

ENDCAPS

Tracker Insertion Dec.'07

CMS Heavy-Ions programme

High Density QCD with Heavy Ions Physics Technical Design Report, Addendum 1

~25 CMS-HI institutions~100 collaborators

Adana, Athens, Auckland, Budapest-KFKI, Budapest-Eötvös L., CERN, Chicago, Chonbuk, Colorado, Davis U.C., Demokritos, Ioannina, Iowa, Kansas, Korea Univ., Lisbon, Lyon, Los Alamos, Maryland, Minnesota, MIT, Moscow, Mumbai, Seoul Univ., Vanderbilt, Zagreb

D.d'E (ed.) et al. CERN-LHCC-2007-009; J.Phys.G. 34, 2307-2455 (2007)

CMS detector at the LHC

QCD matter in CMS, bulk properties

Final A-A multiplicity ∞ Initial number of released gluons:

- Single hadron (π[±], K[±], p,p̄) p_T spectra in p_T~ 0.2 – 2. GeV/c via pixel-triplet algorithm in 3 layers of Si tracker.
- PID via dE/dx (Gaussian unfolding).
- Performances (p_T>0.2 GeV/c):

Elliptic flow (v₂) measurement:

RHIC: zero-viscosity fluid

- 2 different methods :
 - (1) reaction-plane in HCAL+ECAL, tracker(2) cumulant analysis

[Non-flow systematic uncertainties not included]

QCD matter in CMS Hard ("tomographic") probes

- Unique CMS High-Level-Trigger \approx 12k \times 1.8-GHz CPUs ~ 50 Tflops !
- CMS HLT fast enough to run "offline" algos on every PbPb evt. !

High-p_T hadron spectra: ⟨q̂⟩, dN^g/dη

Physics reach (HLT):

Iterative-cone (R=0.5) + Backgd subtraction:

jet shapes, energy-particle flow, ...

γ - jet in Pb-Pb (I): medium frag. functions

 Photon ID via "Fisher LD" Multi-Variate-Analysis w/ 21 vars: ECAL cluster-shape & ECAL/HCAL/tracker isolation cuts

Medium-modified Fragmentation Functions

- Medium mod. FFs measurable for $z < 0.7 \& 0.2 < \xi < 5$ with high significance
- Syst. uncertainties dominated by (low) jet reco effic. 30-70 GeV

$PbPb \rightarrow \Upsilon + X$ event in CMS

Event display with full CMS software/simulation framework

Pb+Pb event (dN_{ch}/d η = 3500) with $\Upsilon \rightarrow \mu^+\mu^-$

Reconstruction performances :

best LHC dimuon mass resolution.

S/B~4.5

Physics reach:

Reconstruction performances :

 p_{T} reach (0.5 nb⁻¹)

Υ' / Υ stat. reach (HLT)

- Equivalent flux of photons in UPCs:

E_{γmax} ~ 80 GeV (PbPb-LHC)

 γ Pb: max. $\sqrt{s_{\gamma Pb}} \approx 1.$ TeV $\approx 3. - 4. \times \sqrt{s_{\gamma p}}$ (HERA) \sqrt{c}

Y photoproduction (~500 Y/0.5 nb⁻¹): unexp.....

γγ: max.
$$\sqrt{s_{\gamma\gamma}}$$
 ≈ 160 GeV ≈ $\sqrt{s_{\gamma\gamma}}$ (LEP)

CMS-HI activities around 3 main axes:

1. Fully incorporating HI software objects into CMSSW:

- Add HYDJET/PYQUEN & other HI gens. to Physics Validation & Prod. chain
- All physics objects fully available/validated/maintained in CMSSW: tracks, jets, muons, b-jet tagg., photons, electrons, centrality, v2, ...
- All ongoing/missing physics analyses completed:
 - Z, b-jets, Z(γ^*) jet, B-->J/ ψ , D/B mesons, prompt photons, (di)electrons, ...

2. Participation to first p-p run:

- Contributions to QCD studies $\left\{ (dN/d\eta, dN/dp_T h \pm, jets, quarkonia, ...) \right\}$
- Benchmark measurements for Pb-Pb J

3. Detector / DAQ / Trigger (L1, HLT) readiness for Pb-Pb:

- Confirmation of detector/DAQ functioning/configuration (tracker, calorimeters, muon spectrometers, ...) under expected Pb-Pb conditions
- Finalize L1 & HLT trigger-menus for Pb-Pb.

Algorithm development, commissioning, validation, tag, performance:

•Tracking / Vertexing (low & high p_T)

- Jets: Pileup subtraction with different jet finders JetPlusTrack (JPT)
- Muons (L3 & offline reconstruction)
- b-tagging
- Photons
- Reaction-centrality
- Reaction-plane/v2

HI Physics analyses

The priority is to finalize ongoing analyses:

- dN/deta
- QQbar porting to CMSSW
- **■**Z **→** μμ
- b-jets
- B \rightarrow J/ ψ
- Z(γ*) jet
- Direct photons
- Cosmic-rays

ه ...

DAQ

- need to reestimate maximal occupancy for subdetectors tracker/ECAL/HCAL/Muons
- evaluate with DAQ-team the bottlenecks
- estimate maximal possible rate through DAQ to online farm
- Online
- Trigger
 - check needed paths in L1 and HLT
 - timing issues for L3 muon trigger

- We will need a lot of CPU and disk space to conduct preparations of heavy-ion trigger algorithms and data reconstruction while taking and analysing pp data
- Good progress in making the heavy-ions software usable in the overall CMS framework
- Planning to run on the grid using standard CMS job handling tools
- Worldwide collaboration possible: it takes some effort to get started..

LHC Computing Model

LHC Computing Grid

Advantages of CMS over other HI experiments

- Exceptional acceptance, hermeticity and resolution
 - Calorimeters: $\Delta \phi = 2\pi$, $\Delta \eta = 10$ (13 with CASTOR), high granularity and energy resolution
 - Tracker: $\Delta \phi = 2\pi$, $\Delta \eta = 5$, $\Delta p_T/p_T < 1-2\%$
 - Muons: $\Delta \phi = 2\pi$, $\Delta \eta = 5$, $\sigma_{MY} \sim 50$ MeV
- Simple and fast DAQ
 - Triggering flexibility
- <u>Unique</u> HI measurements in hard-sector (starting at Day-0):
 - Fully reconstructed jets, high-p_T hadrons up to 200 GeV, Υ spectroscopy at y=0 (hot&dense medium), Z⁰, ...
- While covering basic global/soft-sector observables:
 - Centrality determination
 - Multiplicity, elliptic flow
 - Some low p_T capabilities with $\pi/K/p$ particle ID
- Note: ALICE has more extensive low p_T particle ID capabilities

- Very similar physics goals
- Very similar detector configuration
- Detailed performance advantages
 - Better muon resolution
 - Better charged particle tracking: more layers, pulseheight resulting in better resolution and fewer fakes
 - Simpler and more powerful DAQ/trigger
 - Unique forward detector coverage (ATLAS has no effective coverage within 5<|η|<8)
 - Note: ATLAS has possibly better calorimetry due to longitudinal segmentation
- Longer heavy-ion tradition within collab.: HI physics included in all CMS reports starting from first proposal. Stronger HI groups continuously working since 1994. Bolek Wyslouch 34

Physics Plan

- Comprehensive heavy ion physics program with emphasis on hard probes
- Program follows increasing luminosity
 - Continuously extend p_T range
 - New probes
 - Increase level of precision and detail
 - Tighten and optimize trigger
- Pb+Pb for the first few years, expect other ions and p+Pb later

Calendar Year	Physics (known physics)	Total Ύon tape
2008	Preparations: HLT, Reconstruction, first p+p physics at low energy	0
2009	Reference $p+p$, global observables, jets $E_T < 200$ GeV, charged particle spectra, first dimuon events,	0.3 k
2010	Centrality and event plane dependence of global obs., charged particle spectra to 200 GeV, multi-100 GeV jets, open b,c, first quarkonia	10k
2011	Detailed jet fragmentation studies, multi-jets, quarkonia physics, first tagged jet studies, detailed open b,c studies	30k
2012	Extensive studies of rare channels, centrality, event plane dependence of quarkonia, tagged jets, heavy quarks	50k
2013	Detailed studies of rare channels	70k

- CMS is getting ready for pp data this summer
- Heavy-ion specific preparations are well underway
- Tremendous excitement at CERN
- Large role for Korean collaborators: already very active
 - B physics
 - muon reconstruction
 - Computing
- Thank you very much for the hospitality!